Нурматов Г.Р

Студент кафедры прикладной информатики и информационных технологий НИУ «БелГУ», 3 курс (Белгород, Россия) Научный руководитель: Зайцева Т. В. доц. кафедры прикладной информатики и информационных технологий НИУ «БелГУ», (Белгород, Россия)

Nurmatov G. R.

Student of the Department of Applied Informatics and Information Technology

NRU "BelSU", 3rd year (Belgorod, Russia)

Scientific supervisor: Zaitseva T. V.

Associate Professor of the Department of Applied Informatics

and Information Technology

NRU "BelGU", (Belgorod, Russia)

СОЗДАНИЕ ЭКСПЕРТНОЙ СИСТЕМЫ НА БАЗЕ ЭКСПЕРТНОЙ ОБОЛОЧКИ ESWIN

CREATING AN EXPERT SYSTEM BASED ON THE ESWIN EXPERT SHELL

Аннотация: Статья посвящена освоению технологии и методики построения экспертных систем на примере разработки учебной экспертной системы. Рассмотрен вариант построения экспертной системы в роли одновременно эксперта и инженера по знаниям. Составлена база знаний, состоящая из набора фреймов и правил. Создана экспертная система на базе экспертной оболочки EsWin.

Abstract: The article is devoted to the development of technology and methods of building expert systems using the example of the development of an

educational expert system. A variant of building an expert system in the role of both an expert and a knowledge engineer is considered. A knowledge base consisting of a set of frames and rules has been compiled. An expert system based on the EsWin expert shell has been created.

Ключевые слова: фрейм, правило, база знаний.

Keywords: frame, rule, knowledge base.

ESWin v. 1.0 — это программа, позволяющая работать с экспертными системами, основанными на правилах и фреймах. Она умеет использовать лингвистические переменные и решать задачи методом обратного логического вывода. Фреймы используются в процессе интерпретации правил-продукций как структуры данных, содержащие лингвистические переменные.

База знаний состоит из постоянного и переменного компонентов. Переменная часть (база данных) включает факты, полученные логическим выводом, которые могут изменяться в процессе работы системы. Начальная база знаний находится в текстовом файле *.klb, где хранятся фреймы и правила-продукции.

Файл *.dtb содержит факты, полученные в процессе логического вывода, и создается самой программой. Оба файла начинаются с одинаковых частей названия. Внешнее представление базы знаний в текстовом файле включает фреймы и правила-продукции.

TITLE=Выбор и приобретение процессора

FRAME=Цель

Parent:

Выбор и приобретение процессора :()

ENDF

FRAME=производитель процессора

Parent:

свойство[какого производителя процессоров хотели выбрать:]: (intel;amd;apple)

ENDF

FRAME=область применения процессора

Parent:

свойство[какова область применения процессора:]:(работа с документами; для вычисления математических задач; для видеоигр)

ENDF

FRAME=для какой операционной системы

Parent:

свойство[под какую операционную систему хотите использовать:]: (windows;linux;macos)

ENDF

FRAME=тип оперативной памяти

Parent:

свойство[с каким типом оперативной памяти должен работать процессор:]:(DDR2;DDR3;DDR4)

ENDF

FRAME=встроенное видео

Parent:

свойство[должно ли быть встроенное видео ядро или нет:]:(да;нет) ENDF

```
RULE 12
=(производитель процессоров.свойство ; intel) 100
 =(область применения процессора.свойство ; для вычисления математических задач ) 100
=(для какой операционной системы.свойство ; windows) 100
=(тип оперативной памяти.свойство ; DDR4) 100
=(встроенное видео.свойство ; да) 100
=(кэш-память.свойство ; кэш-L1) 100
 =(количество ядер.свойство ; 2-ядерный) 100
=(мощность.свойство ; до ЗГгц) 100
=(сокет.свойство ; LGA1700) 100
 =(цена.свойство ; от 5тр до 15тр) 100
ms(выбор и преобретение процессора; Исходя из ваших требований, лучшим вариантом является п
FNDR
RULF 13
=(производитель процессоров.свойство ; intel) 100
=(область применения процессора.свойство ; для вычисления математических задач ) 100
=(для какой операционной системы.свойство ; windows) 100
 =(тип оперативной памяти.свойство ; DDR4) 100
 =(встроенное видео.свойство ; нет) 100
=(кэш-память.свойство ; кэш-L1) 100
=(количество ядер.свойство ; 2-ядерный) 100
=(мощность.свойство ; до ЗГгц) 100
=(сокет.свойство ; LGA1700) 100
=(цена.свойство ; от 5тр до 15тр) 100
DO
ms(выбор и преобретение процессора; Исходя из ваших требований, лучшим вариантом является п
ENDR
RULE 14
=(производитель процессоров.свойство ; intel) 100
=(область применения процессора.свойство ; для вычисления математических задач ) 100
=(для какой операционной системы.свойство ; windows) 100
```

Рисунок 1 – правила базы знаний

После получения всех ответов программа выводит подходящий процессор.

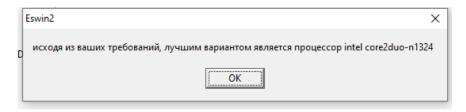
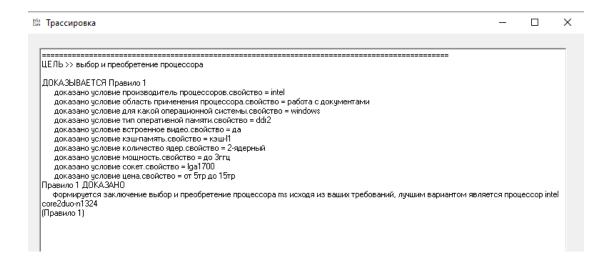



Рисунок 2 – Вывод результата

Трассировка найденного решения будет выглядеть следующим образом.

Рисунок 3 — Трассировка

Использованные источники:

- 1) Вендров А.М. CASE технологии. Современные методы и средства проектирования информационных систем. М.: Финансы и статистика, 1998.
- 2) Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. СПб.: «Питер», 2001- 384 с.
- 3) Змитрович А.И. Интеллектуальные информационные системы. Тетра Системс, Минск, 1997.-365с.
- Полковников А.В., Корпоративная система управления проектами, Электронный офис, №10, 1997.
- 5) Попов Э.В., Кисель Б.Б., Фоминых И.Б., Шапот М.В. Статические и динамические экспертные системы. М.: Финансы и статистика, 1996 320с.
- 6) Поспелов Д.А. Моделирование рассуждений. Опыт анализа мыслительных фактов. М.: Радио и связь, 1989.- 184 с.